If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144+b^2=544
We move all terms to the left:
144+b^2-(544)=0
We add all the numbers together, and all the variables
b^2-400=0
a = 1; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·1·(-400)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*1}=\frac{-40}{2} =-20 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*1}=\frac{40}{2} =20 $
| -1/3w-8=-5w-22 | | 8x+6/4+6x+4/5=-3 | | 10x+1+x=82 | | F=2x+13 | | 10−d=4 | | -(m-3)=-25-5m | | 106z=31.8 | | 2(3x-1)=2x+14 | | -8+9x=7x-4+20 | | 5b+4b-7=29 | | 4(p−15)=16 | | (x+2)(x+1)=4x+22 | | -6(r-1)-4=2r-6 | | x-2x+8=3x+4 | | 162/x-9=162/x+3 | | 6(-2x-7)-6(1-8x)=8x+6+12+6x | | 5=3(10w+2)+9 | | 5x+1-3x=13 | | 15=4.9t^2 | | x=48+50 | | 25=4.9t^2 | | 2a-5=3(a+1)+12a+7 | | 10x-(3x+6)+10=5x | | 2v-7-4=1 | | 0.4z-6=12 | | 162/x-9=162/x-3 | | 11y-7y-12=35.566 | | 2+1.5x=18-1.25x | | 3/5x+1/4=1/3-2/5x+1/3 | | 18x+8x+72=36x | | -2p+7=-(6p+8) | | 1/2x-14=3/8 |